Control PV Plant with a PLC (Energy gateway for renewables)

Dušan Ferbas

Solar Monitor s.r.o. Czech Republic

> Solar Monitor

Product Features

- Unified PLC interface
- Power efficient
- Modular solution
- Embedded experience since 1997

4

Safety Relays

Door Contact

Overvoltage

(Theft Protection)

(Lightning Protection)

Monitoring of

Electricity Meters

(AC, DC)

Why this gateway is useful?

- Technological criteria
- Fast implementation
- Costs reduction
- Postpone energy consumption
- Weather forecast
- Systems interaction
- Dependancy on price levels, stock market prices
- Conditions for connection a PV plant to the grid

Which manufacturers are supported?

What Are the Solar Monitor Solution Areas?

Software Interface Overview

Webserver of the SM2-MU: Responsive Design

🔊 Solar					🎢 Setup Wizard	졝 Old Design	 Solar Monitor 	📶 Portal 💡 Wiki	i
C Monitor	Overview So	olarMonito	r - S	studer ⁻	Test				
🖀 Overview 🔸	Home > Overview								
Peaks									~~¥
LCD Panel	Inverter(s) Total Produced Energy from inverters				Tracker(s) Total Produced Energy from trackers				
lılıl Charts	L. D.	۳ 0.0 kV	oday Vh	Earnings	l ta		™0.0 Toda	ay Earnings 1 0.0	
🚳 Alerts			Total	Earnings			Tot	al Earnings	
	Inverters (Hybrid)								
		Name	State	Mode	Temperature	Grid power (0.2kW)	Power (0.2kW)	Updated	
		XTH 8000-48V (L1)	0	Charger	- °C	104.98 W	141.96 W	0s	
		XTH 8000-48V (L2)	0	Charger	- °C	151 W	42.99 W	Os	
	¢\$	XTH 8000-48V (L3)	0	Charger	- °C	-20 W	42.99 W	0s	
	- #	,							
	······ MPP Trackers								
		Name	State	Mode	Temperature	Arr Power (0k)	V) Power (0.1kW)	Updated	
		VT 80-48V	0	Night	22 °C	0 W 0	52 W	Os	
		VS 70-48V	0	Night	22 ℃	0 W 0	0 W	0s	
		VS 120-48V	0	Night	22 °C	0 W 0	0 W	Os	
	¢\$								

SNMP – Castlerock SNMPc: Geographical Maps

What we automate at a power plant?

- Power control active & reactive, fluent regulation
- Obtaining data from devices with proprietary protocols
- Smart house, Smart City, EV and Telecom system integration
- Parameters settable from a PLC

Diff. B. C. Don

GUMGX

What you can control at a PV Power Plant?

- Residential
 - Energy overflows
- Companies
 - dtto
 - ¼ hour production and consumption maximums, batteries
 - Electricity flow (charging, discharging)
- Solar parks, institutions
 - Distributor control, Reactive power control (correction)

What makes our solution unique?

Universal and custom blocks in the SM2-MU

- Forward and backward both device and SW compatibility
- Communication with "not yet existing devices"

How do we achieve easy and fast implementation?

• Modbus variables organized in blocks (Sunspec)

 E.g.: Existing installation with 3 inverters from one manufacturer, 1 device breaks down, replaced with another one, no change in communication, neither in management

PLC Example in IEC 61131-3 FBD: Data Reading

smMiB

Solar Monitor

PLC Example in IEC 61131-3 ST: Data Reading

```
PROGRAM prgMain
 VAR INPUT
 END VAR
 VAR OUTPUT
 END VAR
 VAR
       enable : BOOL := 1;
        ip : STRING := '192.168.1.221:502';
        chanCode : UINT := ETH1 uni0;
       tcp : BOOL := TRUE;
        sm : fb Solarmonitor10;
 END VAR
 VAR TEMP
 END VAR
    sm(enable := enable, ip := ip, chanCode := chanCode, tcp := tcp);
END PROGRAM
```


PLC Example in IEC 61131-3 FBD: Power Control

PLC Example in IEC 61131-3 ST: Power Control

```
PROGRAM prgMain
 VAR INPUT
 END VAR
 VAR OUTPUT
 END VAR
 VAR
        enable : BOOL := 1;
        unitID : USINT := 5;
        sm pc : fb PowerControl30;
        ip : STRING := '192.168.1.221:502';
        chanCode : UINT := ETH1 uni0;
        tcp : BOOL := TRUE;
        val : UINT := 60;
        active : BOOL := TRUE;
 END VAR
 VAR TEMP
 END VAR
    sm pc(enable := enable, ip := ip, unitID := unitID, chanCode :=
chanCode, tcp := tcp, pwctrl := val, active := active);
```

END PROGRAM

Solar Monitor

What are your advantages?

- Easy and fast implementation
- Technology independence
- Seamless hardware replacement in case of a failure of an original inverter
- Readiness for future systems
- Electronic parts that lasts (without "electrolytes" like Aurora)
- Graphic presentation (locally and in the cloud)
- Visualization on a large LCD display

LCD Visualization Example (see our Youtube channel)

Ibn Hayan Kindergarten

Dashboard Example: normal, no consumption during day

Graph Example: normal, consumption during day

Graph Example: increasing consumption = ?

Graph Example: afternoon consumption discharges battery

Graph Example: evening consumption, night peaks

Graph Example: same situation + next day (charging)

Any questions are welcome!

Dušan Ferbas Solar Monitor s.r.o.

dferbas@solarmonitor.cz

